

Produktinformation

Magnetisch-dynamischer Abscheider MdA

Wasserqualität in technischen Anlagen

INDUSTRIA-TECHNIK

Ø+49 (0)2151 777694, info@industria-technik.de D 47798 Krefeld

Über uns

Die Industria-Technik ist aus einem Ingenieurbüro für Gebäude-, Energie- und Umwelttechnik hervorgegangen. Wir haben viele Inbetriebsetzungen von Anlagen begleitet und gutachtliche Stellungnahmen abgegeben.

Die Analyse von Störungsursachen in wassertechnischen Anlagen führte oft zu dem Ergebnis, dass das Wasser als Schwachstelle im System angesehen werden muss. Die korrosiven Eigenschaften des Energieträgers werden oft unterschätzt. Das hat uns darauf gebracht, Separierungsgeräte zu entwickeln, die sich die ferromangnetischen Eigenschaften der Korrosionsprodukte zu Nutze machen.

Nach Erfahrungen aus etlichen Betriebsjahren bescheinigen Anlagenbetreiber unseren Geräten eine hohe Reinigungseffizienz und einen wirkungsvollen Korrosionsschutz.

Inhaltsverzeichnis

wasser in technischen Anlagen		
Anforderungen	Seite	2
Magnetisch-dynamischer Abscheider	Seite	3
Vorteile des MdA	Seite	4
Geräteauswahl	Seite	5, 6
Planungs- und Montagehinweise	Seite	7
Arbeitsblätter		
Geräteauswahl Diagramm	Seite	8
Geräte bis 28 m³/h, Maße	Seite	9

Seite

Seite

Seite

Seite

10

11

12

13

Geräte bis 235 m³/h, Maße

Geräte bis 235 m³/h, Platzbedarf

Ausschreibungstexte, Standgeräte

Ausschreibungstexte, Geräte für Rohrleitungsmontage

Wasser in technischen Anlagen

Anforderungen

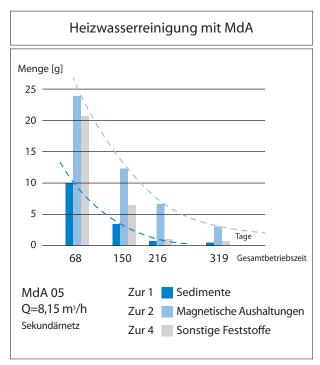
ufgrund seiner einmaligen thermischen Eigenschaften und der einfachen Verfügbarkeit ist Wasser ein unverzichtbarer Energieträger, der aus dem Anlagenbau nicht wegzudenken ist. Die Benetzung der metallischen Anlagenteile mit Wasser führt zu elektrochemischen Prozessen, die als Korrosionen bezeichnet werden.

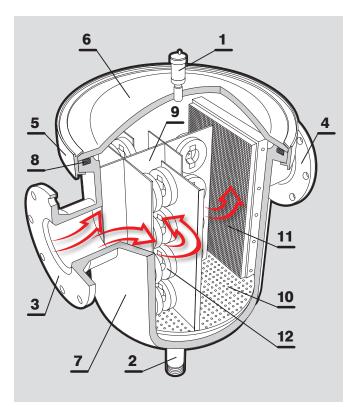
Wasser mit seinen Inhaltsstoffen verursacht an metallischen Werkstoffen einen Materialabtrag, der in Form von losen Teilchen mit dem Medium transportiert wird. Moderne Anlagen bieten für diese Oxidationsprodukte oft keine Absetznischen mehr, die Störfracht bleibt im Umlauf.

Ihre Existenz wird erst dann bemerkt, wenn sie Schaden angerichtet hat.

Zu den weiteren wasserseitigen Störungen gehören Inkrustationen, die aus Korrosionsherden gebildet werden und Ablagerungen, die aus Korrosionspartikeln bestehen. Eine wesentliche Menge an Ablagerungen kommt aus der Wasserhärte.

Eine Antwort der Fachkreise auf den schlanker gewordenen Geräte- und Anlagenbau ist die Novellierung der Richtlinie VDI 2035 Blatt 1 "Vermeidung von Schäden in Warmwasser-Heizungsanlagen" (Dez. 2005), die der Qualität des Füll- und Ergänzungswassers gewidmet ist. Auf dem Markt haben sich Enthärtungsgeräte im Ionentauschverfahren etabliert. Die Härtebildner Kalzium und Magnesium werden in diesem Verfahren gegen Natrium ausgetauscht. Das dabei gebildete Natriumhydrogenkarbonat verbleibt jedoch im System. Dieses Natriumhydrogenkarbonat, allgemein als Natron bekannt, ist thermisch instabil und geht an der heißen Kesselwand neue unlösliche Verbindungen ein.




Der magnetisch- dynamische Abscheider ist ein erprobtes Gerät, um Anlagen ohne chemische Zusätze vor Korrosionen, Kesselstein und Schlammfrachten dauerhaft zu schützen. Die Inhaltsmenge an Mineralstoffen und die Leitfähigkeit des Wassers werden herabgesetzt und der pH-Wert wird korrigiert. Wo der MdA eingesetzt wird, wird die in der Richtlinie VDI 2035 geforderte Wasserqualität nachhaltig erreicht und eingehalten.

Magnetisch-dynamischer Abscheider (MdA)


Diagramm

Das Diagramm zeigt den typischen Abbau der Verunreinigungen im Kreislauf. Die Sedimente (1) und undefinierte Feststoffe am Siebfilter (4) nehmen schnell ab. Die Menge der Oxidationsprodukte (2) pendelt sich auf ein gleichbleibendes Niveau ein. Diese Tatsache ist mit dem Lufteintrag, der in jeder Anlage vorkommt, zu erklären.

Vier Funktionen in einem Gerät

Gerätebeschreibung

Der MdA besteht aus einem Druckbehälter (7) mit einem abnehmbaren Deckel (6) für die Innenrevision.

Im Deckel befindet sich die Entlüftung (1), im gewölbten Boden der Entleerungsstutzen (2). Die im Behälter befindlichen Blechschikanen (9) leiten das durchströmende Wasser an daran befestigten Permanentmagneten (12) vorbei. Die Schikanen teilen den Behälter in Zonen mit unterschiedlichen Fließgeschwindigkeiten. Im unteren Behälterteil befindet sich ein Lochblech (10) das das Sedimentbecken nach oben abgrenzt. Am vorstehenden Austrittstutzen (4) ist das Filtersieb (11) abnehmbar befestigt.

Funktionsbeschreibung

Das Medium durchströmt mehrere starke Magnetfelder des Gerätes. Die Magnete halten Korrosionsprodukte, die nichts andes als Mischeisenoxide sind, kontinuierlich aus. Die Korngröße spielt dabei keine Rolle, es sind von den kleinsten erst entstandenen Korrosionen bis zu angeschwommenen Großpartikeln. Auf Grund ihrer großen Oberfläche werden mit den Eisenoxiden gleichzeitig auch die Härtebildner separiert.

Die permanent-magnetische Wasserbehandlung führt zur Bildung von Oxidüberzügen, die die metallischen Anlagenkomponenten passivieren. Dieser Korrosionsschutz wird ohne Fremdenergie und ohne Verwendung von Chemikalien erzeugt.

Magnetisch-dynamischer Abscheider MdA

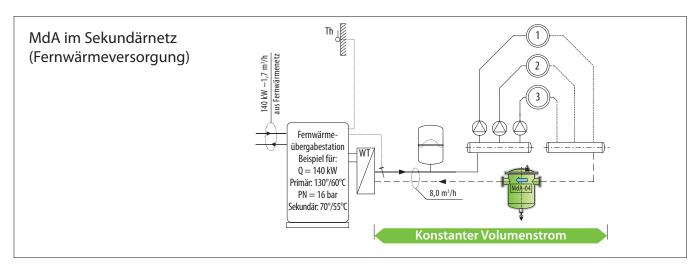
Vorteile des MdA:

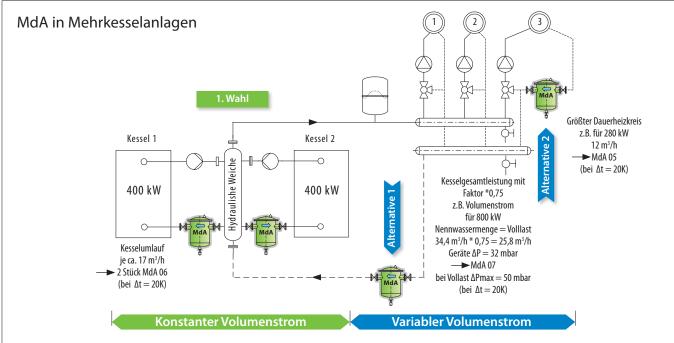
- Das Spülen von Neuanlagen ist nicht erforderlich.* Nach Einschalten des Wasserkreislaufs werden die mobilisierten Verunreinigungen schnell und wirkungsvoll separiert.
- Füll- und Ergänzungswasser muss nicht vorbehandelt werden.
- Die Wasserqualität nach Richtlinie VDI 2035 wird kurzfristig erreicht.
- Die Anlage wird bei der Bildung eines korrosionshemmenden Oxidüberzugs unterstützt.
- Der einmal ausgelegte Anlagenwirkungsgrad bleibt durch den MdA während der gesamten Betriebszeit erhalten.
- Klarwasser betriebene Anlage, dadurch belagfreie Wärmeaustauschflächen bei Kesseln und Wärmetauschern.

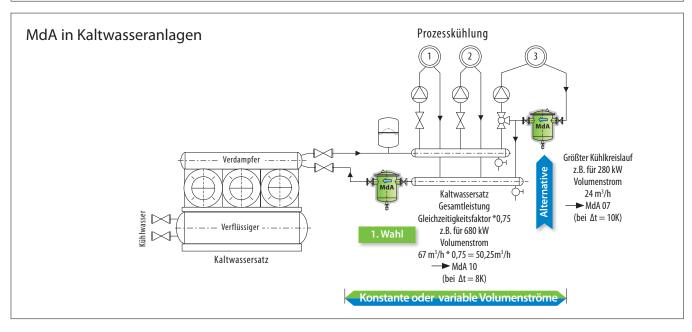
- Signifikante Herabsetzung der Leitfähigkeit.
- Korrektur des pH-Wertes
- Die Wasserhärte reduziert sich zu einer vernachlässigbaren Größe.
- Alle Eigenschaften gelten auch für Bestandsanlagen.
- Verkrustungen und Ablagerungen werden zerschwemmt und abgebaut.
- Flächenheizungen werden schlammfrei. Bestandanlagen werden rehabilitiert.
- Systemtrennung Fußbodenheizung/ Wärmeerzeuger ist nicht erforderlich.

*) Für gelötete Kupferohr-Installationen wird diese Empfehlung aufgrund der verwendeten Flussmittel eingeschränkt.

Kurz nach dem Einbau

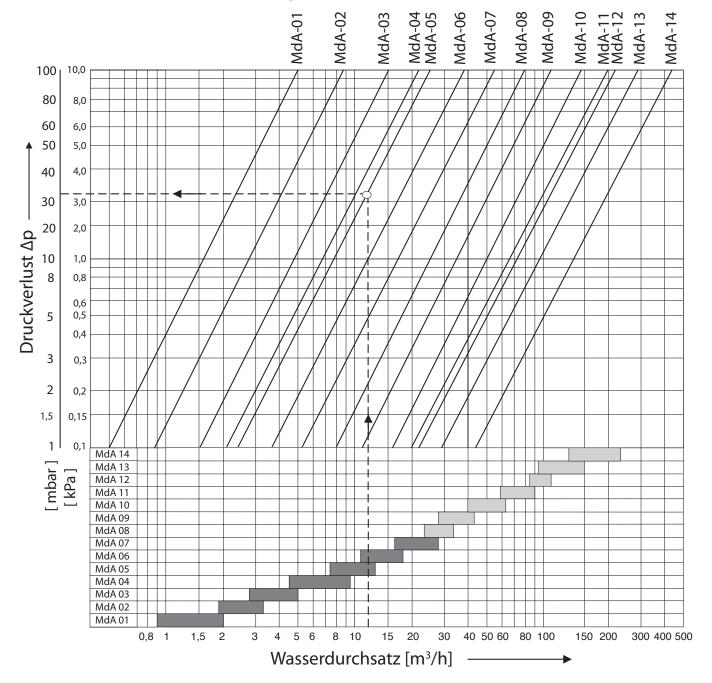

Wenige Wochen später


Geräteauswahl


er MdA ist ein dynamisch wirkendes Gerät. Es benötigt eine definierte Mediendurchströmung, um seine Wirkung voll entfalten zu können. Die Geräteauswahl erfolgt daher nach dem optimalen Anlagenduchsatz, siehe hierzu Arbeitsblatt Seite 6. Ein gutes Abscheideergebnis wird erreicht, wenn der MdA in den größten Kreislauf mit Dauerleistung eingebaut wird. Die Produktpalette deckt einen Durchsatzbereich von 1 m³/h bis 235 m³/h und mehr. Die Standartgeräte sind für Betriebsbedingungen von max. zul. Druck 10 bar und zul. max. Temperatur 110°C zugelassen. Andere Größen und Betriebsbedingungen sind auf Anfrage lieferbar. Die Geräte werden nach der Druckbehälterverordnung ausgelegt und gebaut. Sie erfüllen die Europäische Richtlinie über Druckgeräte 97/23/EG.

Geräteauswahl

Planungs- und Montagehinweise

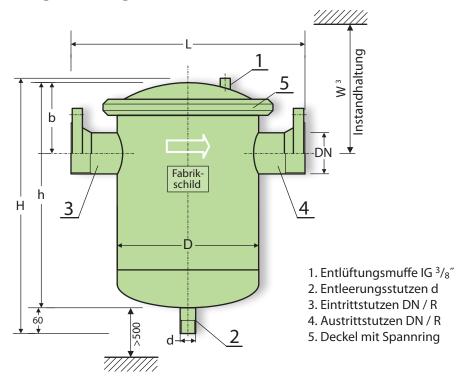


Arbeitblätter

Geräteauswahl

Magnetisch-dynamischer Abscheider MdA

Auswahl- und Druckverlustdiagramm



Beispiel:

Gesucht wird ein MdA für einen Durchsatz von 12 m³/h, gewählt wird von beiden durchkreuzten Balken das kleinere Gerät MdA 05. Der Gerätewiderstand bei Durchsatz von 12 m³/h beträgt 32 mbar.

Magnetisch-dynamischer Abscheider MdA

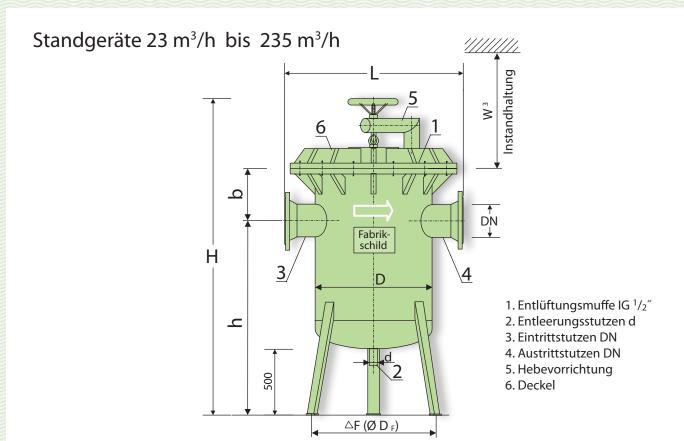
Geräte für Rohrleitungsmontage 1 m³/h bis 28 m³/h

Technische Änderungen vorbehalten

Тур	Anschlussmaß ²		Wasser- Durchsatz	Behälter- Inhalt	D	Н	L	h	b	d	W ³	Gewicht ⁴
	Flansch PN 16	Gewinde- Stutzen	Q von - bis ¹	V ca.								
	DN	R	m³/h	ltr	mm	mm	mm	mm	mm	R Gew	mm	kg
MdA 01	-	1″	0,9 - 2,0	5	159	360	300	235	40	1″	300	11
MdA 02	-	11/4"	1,9 - 3,3	5	159	360	300	220	55	1″	300	11
MdA 03	-	11/2"	2,8 - 5,0	5	159	360	300	215	60	1″	300	11
MdA 04	50	-	4,5 - 9,5	12	219	545	375	320	90	11/4"	500	28
MdA 05	65	-	8,0 - 13	12	219	545	375	310	100	11/4"	500	29
MdA 06	80	-	11 - 18	27	273	650	430	390	115	11/4"	600	52
MdA 07	100	-	16,5 - 28	46	324	755	570	485	120	11/2"	700	98

Standardgeräte sind zugelassen für maximal zulässigen Druck PS = 10 bar und maximal zulässige Temperatur TS = 110 °C. Höhere Betriebstemperatur und höherer Nenndruck auf Anfrage lieferbar.

¹⁾ Druckverlust Δp ist nach dem


Auswahl- und Druckverlustdiagramm zu bestimmen.

³⁾ Empfohlene Wartungshöhe

⁴) Betriebsgewicht = Summe aus Gewicht + Behälterinhalt

²⁾ Andere Anschlussmaße auf Anfrage lieferbar

Magnetisch-dynamischer Abscheider MdA

Technische Änderungen vorbehalten

Тур	Anschluss- Flansch PN 16	Wasser- Durchsatz Q von - bis ¹	Behälter- Inhalt V ca.	D	Н	L	h	b	d	W ³	Gewicht Magnet- Einsatz	Gewicht⁴
	DN ²	m³/h	ltr	mm	mm	mm	mm	mm	R Gew	mm	kg	kg
MdA 08	100	23 - 34	84	406	1430	680	1050	160	11/2"	910	19	196
MdA 09	125	28 - 43	117	457	1550	735	1090	200	11/2"	1000	21	244
MdA 10	150	40 - 62	167	508	1660	800	1175	210	11/2"	1060	29	305
MdA 11	150	59 - 90	302	620	1955	900	1405	220	2″	770	2 x 24	436
MdA 12	200	85 - 110	308	620	1950	900	1375	250	2″	800	2 x 24	443
MdA 13	200	94 - 150	500	718	2200	1015	1565	250	2″	850	2 x 28	620
MdA 14	250	130 - 235	752	820	2450	1185	1735	280	2″	1030	2 x 37	775

Standardgeräte sind zugelassen für maximal zulässigen Druck PS = 10 bar und maximal zulässige Temperatur TS = 110 °C. Höhere Betriebstemperatur und höherer Nenndruck auf Anfrage lieferbar.

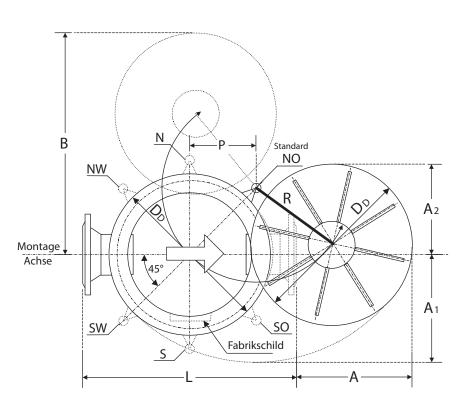
¹) Anfangsdruckverlust ΔP der Geräte ist nach dem Auswahldiagramm zu bestimmen.

²) Andere Anschlussflansche auf Anfrage lieferbar

³⁾ Empfohlene Wartungshöhe

⁴⁾ Betriebsgewicht = Summe aus Gewicht + Behälterinhalt

Magnetisch-dynamischer Abscheider MdA


Standgeräte 23 m³/h bis 235 m³/h, Platzbedarf

Platzbedarf für Wartungsarbeiten

Für die Durchführung der MdA-Reinigung wird der freigeschraubte Deckel zur Seite geschwenkt.

Aufgrund seines hohen Gewichtes ist dafür eine Hebevorrichtung (HV) vorgesehen. Der Platzbedarf lässt sich aus der Tabelle entnehmen. Standardmäßig befindet sich die Drehachse dieser Vorrichtung 45° von der Rohrleitungs-Montageachse (NO). Andere Drehpunkte der HV sind nach den gestrichelten, durch Himmelsrichtungen bezeichneten Stellen möglich.

Die Durchflussrichtung ist zu beachten.

Ausladung "A" bzw. "B" des zur Seite geschwenkten Deckels in mm

Тур	Anschluss DN	L mm	D _D	A mm	A ₁	A ₂ mm	P mm	B mm
MdA 08	100	680	580	440	425	340	240	980
MdA 09	125	735	640	500	465	370	262	860
MdA 10	150	800	705	550	505	400	285	950
MdA 11	150	900	790	640	570	445	315	1090
MdA 12	200	900	790	640	570	445	315	1090
MdA 13	200	1015	900	740	632	500	500	1250
MdA 14	250	1185	1010	820	703	555	555	1410

Technische Änderungen vorbehalten

Achtung: Deckel darf nur bei festmontiertem Behälter zur Seite geschwenkt werden. Kippgefahr!

Ausschreibungstext Geräte für Rohrleitungsmontage 1m³/h bis 28 m³/h

Magnetisch-dynamischer Abscheider (MdA)

Magnetfeld-unterstützter Abscheider zur permanenten Separierung von Feststoffpartikeln aus geschlossenen Kreislaufsystemen, zur nachhaltigen Reinhaltung des Energiemediums und zum Aufbau einer Passivierungsschicht zur Unterbindung von Korrosionen in metallischen Anlageteilen. Integriertes 4-fach System: Sedimentation, magnetische Abscheidung, Wasseraufbereitung, mechanische Filtration.

Ausführung: Stahlbehälter geschweißt, St 37, mit Ein- und Austrittflanschen nach

DIN 2501/PN 16 bzw. AG-Stutzen, als Hängegerät für den Rohrleitungseinbau. Entlüftungsmuffe, Entleerungsstutzen, Deckel abnehmbar, Gerät außen lackiert

(Kaltwassergeräte schwitzwassergeschützt), Innengarnitur aus Edelstahl,

Filtergewebe 0,5 mm Maschenweite

Gerät wie vor beschrieben:

Тур:		MdA		
Durchsatz:		•••••	m³/h (bitte unb	edingt angeben)
Druckverlust:			mbar	
Betriebsüberdruck n	nax.:	10 bar		
Anschluss Ein-/Austr	ritt:	AG-Stutzen".	•••••	
Flansch PN 16 DN	•••••			
Entlüftung:		3/8" IG Muffe	9	
Entleerungsstutzen:			AG	
Wasserinhalt:		ca	ltr	
Baulänge:			mm	
Bauhöhe:			mm	
Leergewicht:		ca	kg	
Betriebsgewicht:		ca	kg	
Lieferumfang:	Gerät mit	t Gegenflanso	then nach DIN, a	utom. Entlüfter, Kugelhahn
Stück		E-Preis €	•••••	€
Bezug:	INDUS	TRIA-TEC	CHNIK	
	Tel.: 021	51-777694		
	Fax: 021	51-776405		

info@industria-technik.de

13

Ausschreibungstext Standgeräte 23 m³/h bis 235 m³/h

Magnetisch-dynamischer Abscheider (MdA)

Magnetfeld-unterstützter Abscheider zur permanenten Separierung von Feststoffpartikeln aus geschlossenen Kreislaufsystemen, zur nachhaltigen Reinhaltung des Energiemediums und zum Aufbau einer Passivierungsschicht zur Unterbindung von Korrosionen in metallischen Anlageteilen. Integriertes 4-fach System: Sedimentation, magnetische Abscheidung, Wasseraufbereitung, mechanische Filtration.

Ausführung: Stahlbehälter geschweißt, St 37, mit Ein- und Austrittflanschen nach

DIN 2501/PN 16, als Standgerät für den Rohrleitungseinbau. Entlüftungsmuffe, Entleerungsstutzen, Deckel abnehmbar, Gerät außen lackiert (Kaltwassergeräte schwitzwassergeschützt), Innengarnitur aus Edelstahl, Filtergewebe 0,5 mm

Maschenweite

Fax: 02151-776405

info@industria-technik.de

Gerät wie vor beschrieben:

Тур:		MdA		
Durchsatz:			m³/h (bitte un	bedingt angeben)
Druckverlust:			mbar	
Betriebsüberdruck r	nax.:	10 bar		
Anschluss Ein-/Aust	ritt:	Flansch PN 1	6 DN	
Entlüftung:		1/2" IG Muffe	9	
Entleerungsstutzen:			AG	
Wasserinhalt:		ca	ltr	
Baulänge:			mm	
Bauhöhe:			mm	
Leergewicht:		ca	kg	
Betriebsgewicht:		ca	kg	
Lieferumfang:	Gerät mi	t Gegenflanso	then nach DIN,	autom. Entlüfter, Kugelhahr
Stück		E-Preis €	•••••	€
Bezug:	_	TRIA-TEC	CHNIK	
	Tel.: 021	51-777694		

Vorzüge des MdA gegenüber anderen Verfahren

- Wasserqualität nach VDI 2035 mit einem Gerät
- Funktioniert ohne Chemie
- Keine Enthärtung/Vollentsalzung erforderlich
- Reduzierung der Wasserhärte
- Reduzierung der Leitfähigkeit
- Bildung einer Passivierungsschicht
- Aushaltung feinster Schwebstoffe
- Entschlammung von Fußbodenheizungen
- Abbau von Ablagerungen
- Geringer Gerätedruckverlust
- Unterbrechungsfreier Gerätedurchfluss

Vertriebspartner:

Kontakt

INDUSTRIA-TECHNIK Dipl.-Ing. Michael Waluga Westwall 132, 47798 Krefeld Tel.: 02151-777694 Fax: 02151-776405 info@industria-technik.de